本文重点讲述注塑模具的典型结构(组成注塑模八大类零部件:成型零部件、浇注系统、导向机构、脱模机构、侧向分型与抽芯机构、加热与冷却系统、排气系统、其他零部件);注塑模的分类;注塑机和注塑模的关系(包括注塑机性能参数校核与型腔数量的确定、注塑量校核、合模力的校核、注塑压力的校核、模具厚度的校核、开模行程的校核、推顶装置的校核、模具在注塑机上的安装与固定尺寸的校核等)。
注塑模的基本结构都是由定模和动模两大部分所组成的。定模部分安装在注塑机的固定板上,动模部分安装在注塑机的移动板上。
注塑成型时,定模部分和随液压驱动的动模部分经导柱导向而闭合,塑料熔体从注塑机喷嘴经模具浇注系统进入型腔;注塑成型冷却后开模,即定模和动模分开,正常的情况下塑件留在动模上,模具顶出机构将塑件推出模外。图4-1为一典型注塑模。
1.成型零部件 成型零部件是指定、动模部分中组成型腔的零件。通常由凸模(或型芯)、凹模、镶件等组成,合模时构成型腔,用于填充塑料熔体,它决定塑件的形状和尺寸,如图4-1所示的模具中,动模板1和凸模7成型塑件的内部形状,定模板2成型塑件的外部形状。
2.浇注系统 浇注系统是熔融塑料从注塑机喷嘴进入模具型腔所流经的通道,它由主流道、分流道、浇口和冷料穴组成。
3.导向机构 导向机构分为动模与定模之间的导向机构和顶出机构的导向机构两类。前者是保证动模和定模在合模时准确对合,以保证塑件形状和尺寸的精确度,如图4-1中导柱8、导套9;后者是避免顶出过程中推出板歪斜而设置的,如图4-1中推板导柱16、推板导套17。
4.脱模机构 用于开模时将塑件从模具中脱出的装置,又称顶出机构。其结构及形式很多,常见的有顶杆脱模机构、推板脱模机构和推管脱模机构等。图4-1中推杆13、推杆固定板14、拉料杆15、推杆18和复位杆19组成顶杆脱模机构。
5.侧向分型与抽芯机构 当塑件上的侧向有凹凸形状的孔或凸台时,就需要有侧向的凸模或型芯来成型。在开模推出塑件之前,必须先将侧向凸模或侧向型芯从塑件上脱出或抽出,塑件才能顺利脱模。使侧向凸模或侧向型芯移动的机构称为侧向抽芯机构。图4-2为一斜导柱驱动型芯滑块侧向抽芯的注塑模,侧向抽芯机构是斜导柱10、侧型芯滑块11、锁紧块9和侧型芯滑块的定位装置(挡块5、滑块拉杆8、弹簧7)等组成。
6.加热和冷却系统 为满足注塑工艺对模具的温度要求,必须对模具的温度来控制,所以模具常常设有冷却系统并在模具内部或四周安装加热元件。冷却系统一般在模具上开设冷却水道(图4-1冷却水道3)。
7.排气系统 在注塑成型的过程中,为了将型腔内的空气排出,常常需要开设排气系统,通常是在分型面上有目的地开设若干条沟槽,或利用模具的推杆或型芯与模板之间的配合间隙进行排气。小型塑件的排气量不大,因此可直接利用分型面排气,而不必另设排气槽。
8.其它零部件 如用来固定、支承成型零部件或起定位和限位作用的零部件等。
按成型工艺特点:热塑性塑料注塑模、热固性塑料注塑模、低发泡塑料注塑模和精密注塑模;
按其使用注塑机的类型:卧式注塑机用注塑模、立式注塑机用注塑模和角式注塑机用注塑模;
按模具浇注系统:冷流道注塑模、绝热流道注塑模、热流道注塑模和温流道注塑模;
开模时,动模和定模分开,从而取出塑件,称单分型面模具,又称双板式模具,其典型结构如图4-3所示。
单分型面注塑模是注塑模具中最简单最基本的一种形式,它根据自身的需求可以设计成单型腔注塑模,也可以设计成多型腔注塑模,是应用最广泛的一种注塑模。
双分型面注塑模有两个分型面,如图4-4所示。A-A为第一分型面,分型后浇注系统凝料由此脱出;B-B为第二分型面,分型后塑件由此脱出。与单分型面注塑模具相比较,双分型面注塑模具在定模部分增加了一块可以局部移动的中间板,所以也叫三板式注塑模具,它常用于点浇口进料的单型腔或多型腔的注塑模具。开模时,中间板在定模的导柱上与定模板作定距离分离,以便在这两个模板之间取出浇注系统凝料。
双分型面注塑模结构较为复杂,制造成本比较高,零部件加工困难,一般不用于大型或特大型塑料制品的成型。
当塑件有侧孔或侧凹时,需采用可侧向移动的型芯或滑块成型。图4-5所示为利用斜导柱进行侧向抽芯的注塑模。图4-6为利用弯销进行侧向分型的立式注塑模。注塑成型后,动模首先向下移动一段距离,然后固定于定模板2上的弯销4的斜面段迫使滑块3向外移动,与此同时脱模机构的推杆8推动推件板5使塑件自型芯上脱下。
由于塑件的某些特殊结构,要求注塑模设置可活动的成型零部件,如活动凸模、活动凹模、活动镶件、活动螺纹型芯或型环等,在脱模时可与塑件一起移出模外,然后与塑件分离。
图4-7所示为带有活动镶块的注塑模。开模时,塑件包在型芯8和活动镶件9上随动模部分向左移动而脱离定模板11,分型到一定距离,脱出机构开始工作,设置在活动镶件9上的推杆3将活动镶件连同塑件一起推出型芯脱模。合模时,推杆3在弹簧4的作用下复位,推杆复位后动模板停止移动,然后人工将活动镶件重新插入镶件定位孔中,再合模后进行下一次的注塑过程。
对带有螺纹的塑件,当要求自动脱模时,可在模具上设置能够转动的螺纹型芯或型环,利用开模动作或注塑机的旋转机构,或设置专门的传动装置,带动螺纹型芯或螺纹型环转动,从而脱出塑件。图4-8为用于角式注塑机的自动卸螺纹注塑模,由注塑机开合螺母丝杠带动螺纹型芯1转动。
无流道注塑模是指采用对流道进行绝热或加热的方法,保持从注塑机喷嘴到型腔之间的塑料呈熔融状态,使开模取出塑件时无浇注系统凝料。前者称绝热流道注塑模,后者称热流道注塑模。图4-9所示为热流道注塑模。
直角式注塑模具仅适用于角式注塑机。与其它注塑模截然不同的是该类模具在成型时进料的方向与开合模方向垂直。图4-10所示是典型的直角式注塑模,开模时,带有流道凝料的塑件包紧在凸模8上与动模部分一起向左移动,经过一定距离后,推出机构开始工作,以推杆11推动推件板6将塑件从凸模8上脱下。
直角式注塑模的主流道开设在动、定模分型面的两侧,且它的截面积通常是不变的(常呈圆形或扁圆形),这与其它注塑机用的模具是有区别的。主流道的端部,为避免注塑机喷嘴与主流道口端的磨损和变形,可设置可更换的流道镶块,如图4-10中的2所示。
在大多数注塑模中,其脱模装置均是安装在动模一侧,这样有助于注塑机开合模系统中顶出装置的工作。在实际生产中,由于某些塑件受形状的限制,将塑件留在定模一侧对成型更好一些,为了使塑件从模具中脱出,就必须在定模一侧设置脱模机构。
图4-11所示为成型塑料衣刷的注塑模,由于受塑件的形状限制,将塑件留在定模上采用直浇口能方便成型。开模时,动模向左移动,塑件因包紧在凸模11上留在定模一侧而从动模板5及成型镶块3中脱出。当动模左移至一定距离时,拉板8通过定距螺钉6带动推件板7将塑件从凸模上脱出。
每副模具都只能安装在与其相适应的 注塑机上进行生产,因此设计模具时,应 详细地了解注塑机的技术规范,以及注射模与设备相关部分。
塑料注射成型机简称注塑机。主要由注射装置、锁模装置、液压传动及电器控制管理系统、机架等组成,如图8-1所示。
按可成型塑件的精度高低:有一般注塑机和精密注塑机。它与一般注塑机相比,具有注射压力高、注射速度快和温度控制精确的特点。
⑴立式注塑机如图所示,它的注射装置垂直装设,并与锁模机构移动方向成一条轴线。
⑵ 卧式注塑机如图8-3所示,它的注射装置轴线与锁模机构轴线呈一条直线并水平排列。
⑶ 直角式注塑机如图8-4所示,其注射装置轴线与锁模机构轴线相互正交垂直。
优点:结构相对比较简单,便于自制,适于一模仅成型一件,而中心部位不留有浇口痕迹,适用于带有自动回转脱螺纹机构的模具。
注塑机的最大注射量:注射柱塞或螺杆作一次最大注射行程时,注射装置所能达到的最大注出量。
开始设计注塑模时,第一步是要选择确定模具的结构、类型和一些最基本的参数和尺寸,如型腔的个数和需要的注塑量、制品在分型面上的投影面积、成型时需要用的工艺合模力、注塑压力、模具的厚度和安装固定尺寸以及开模行程等等。这一些数据均与注塑机的技术规格紧密关联,如果二者之间不能匹配,则模具将没办法使用,此时只能重新选择确定模具的结构类型或更换注塑机机型。为了了解模具结构类型与注塑机机型是否匹配,必须将二者之间的有关数据来进行校核。
对于多数注塑模,其型腔数量与注塑机的塑化能力、最大注塑量以及合模力等参数有关,此外,还受制品的精度和生产的经济性等因素影响。为了统一阐述型腔数量的设计问题,下面介绍如何依据这一些参数和因素来确定型腔数量的方法,这一些方法也可用来校核初选的型腔数量是否能与注塑机规格相适应。
其中,C1是与型腔无关的费用;C2是与型腔数成比例的费用中单个型腔分摊的费用(元)。
在一个注塑成型周期内,注塑模内所须的塑料熔体总量与模具浇注系统的容积和型腔容积有关,其值用下式计算:
设计注塑模时,必须保 证小于注塑机允许的最大注塑量,二者的关系为:mi =(0.1~0.8)mI
注塑成型时,制品或型腔在与注塑方向正交的模具分型面上的投影面积是影响工艺合模力的重要的因素,其数值越大,需要的合模力也就越大。如果这个数值超过了注塑机允许使用的最大成型面积,则成型的过程中将会出现涨模溢料现象。为此,设计注塑模和选择模具分型面时,一定要满足下面关系式。
注塑成型时,模具所需的工艺合模力与制品在分型面上的投影面积有关,为了可靠地闭锁型腔,不使成型的过程中出现溢料现象,工艺合模力必须小于注塑机的额定合模力,二者的关系为:
注塑压力与塑料熔体在模具中的流动比有关,对于初步选择确定的模具结构,还应对其流动比所需用的注塑压力进行校核,以保证它不超过注塑机允许的、使用的最大注塑压力。流动比的计算方式后面介绍。
注塑模的动、定模两部分闭合后,沿闭合方向的长度叫模具厚度或模具闭合高度。由于绝大多数注塑机的动模与定模固定板之间的距离都具有一定的调节量ΔH(图3-12),因此它们对安装使用的模具厚度均有限制。正常的情况下,实际模具厚度HM 与注塑机允许安装的最大模厚Hmax及最小模厚Hmin之间一定要满足下面条件,即:
如果出现 HM Hmin的情况,并无另外的合用的注塑机时,可采用加设垫板的方法增大HM以解决合模问题;对于HM Hmax的情况,只能重新设计模具厚度或更换注塑机。
开模行程也叫做合模行程,指模具开合过程中动模固定板的移动距离,用符号s表示。当模具厚度确定以后,开模行程的大小直接影响模具所能成型制品高度。即s太小时,模具不能成型高度较大的制品,否则,成型后的制品无法从动、定模之间脱出。因此,设计模具时必须校核它所需用的开模距离是否与注塑机的开模行程相适应。下面分几种情况加以讨论。
对于带有液压-机械式合模系统的注塑机,它们的开模行程均由连杆机构的冲程或其他机构的冲程确定,其最大值仅与冲程的调节量有关,不受模具厚度影响。如果在这类注塑机上使用单分型面和双分型面注塑模,可分别用下面两种方法校核模具所需的开模距离是否与注塑机的最大开模行程互相适应:
对于合模系统为全液压式的注塑机以及带有丝杠传动合模系统的直角式注塑机(如SYS-45和SY-60等),它们的最大开模行程直接与模具厚度有关,即
如果在上述两类注塑机上使用单分型面或双分型面模具,可分别用下面两种方法校核模具所需的开模距离是否与注塑机的最大开模行程 Smax相适应:
当模具需要利用开模动作完成侧向抽芯动作时(图3-16),若设完成侧向抽芯动作的开模距离为Hc,则可分下面两种情况校核模具所需的开模距离是否与注塑机的最大开模行程相适应。
① 当HcH1+H2时,可用Hc代替前面诸校核公式中的H1+H2,其他各项均保持不变。
② 当Hc≤H1+H2时,可不考虑Hc对最大开模行程的影响,仍用以上诸式进行校核。
除了以上介绍的三种校核情况外,注塑成型带螺纹的制品并需要利用开模运动完成脱卸螺纹的动作时,若要校核注塑机最大开模行程,还一定要考虑从模具中旋出螺纹部分所需的开模距离。
由于各种注塑机合模系统中采用的推顶装置不完全一样,所以设计模具时一定要注意使模内的顶出脱模机构与合模系统的推顶装置相匹配。通常是根据合模系统推顶装置的顶出形式、顶杆直径、顶杆间距和顶出距离等,校核模具内的顶杆或推杆配置位置是不是合理,其长度是否能达到使制品脱模的效果。
注塑机动模和定模固定板的四个角部,一般都有四根拉杆。拉杆的作用是为了能够更好的保证注塑机有充足的强度和刚度,但它往往会对模具的外形安装尺寸产生限制,即模具外形的长度尺寸不能同时大于与它们对应的拉杆间距(图3-17a)。如果模具的长度尺寸中有一个超过了拉杆间距,一定要考虑注塑机动、定模两个固定板处于最大间距位置时模具是否有可能是在拉杆空间内旋转。只有在可能旋转的情况下,模具才能象图3-17b那样被安装在两个固定板上,否则,必须改变模具外观尺寸或更换注塑机。
2 模具的安装尺寸与动、定模固定板上的螺孔为了安装压紧模具,注塑机上的动模和定模两个固定板上都开有许多间距不同的螺孔。因此,设计模具时一定要注意模具的安装尺寸应当与这些螺孔的位置及孔径相适应,以便能将动模和定模分别紧固在对应的两个固定板上。模具与固定板的联接固定方式有两种:一种是在模具的安装部位打螺栓通孔,用螺栓穿过此孔拧入注塑机的固定板(图3-18 a);另一种方法采用压板压紧模具的安装部位(图3-18b、c、d)。通常来说,后面一种方法比较灵活,只要安装部位外侧具有螺孔即可。但对于大型模具来讲,后者就不及前者方法安全可靠。
在选择模具与注塑机的联接固定方式时,还需要注意注塑模有无模座、模座有无台阶以及模座尺寸的大小。在图3-18中,与图a、b、c三种方式对应的模座均带有台阶,图a的台阶尺寸较大,图b的台阶尺寸较小,图c的模座尺寸与模具外形一样大,图d方式中的模具不带模座,压板直接将模具压紧在注塑机的固定板上。通常来说,图a、b两种方式较常用。特别是采用图a方式时,即使是紧固螺钉松动,模具也不会从固定板上掉下来,但装卸工作费时,并要求模座上的螺栓孔与固定板上的螺孔位置一致,加工挺麻烦。图c、d两种方式的特点是可将模具外观尺寸设计到固定板允许的最大安装尺寸,但需要在模具侧面加工压板槽。
3 主流道(或主流道衬套)尺寸与喷嘴尺寸为便于脱卸主流道中的凝料,模具中主流道(或主流道衬套)的尺寸必须和注塑机上的喷嘴尺寸相适应,二者的具体关系参见后面第六章内容。
4 主流道中心线与机筒、喷嘴的中心线正常的情况下,注塑成型的过程中均要求模具中的主流道中心线应与机筒和喷嘴的中心线重合。为此,注塑机定模固定板中心都开有一个定位孔,要求定模部分必须带有一个与主流道同心的圆凸台与之配合,该圆凸台称为定位环或定位圈。有关定位环的设计方法参见第六章内容。